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Abstract

This paper presents a heuristic algorithm for solving the facilities layout prob-
lem. The basic approach is the combination of a constructive method with
exchange procedures, used repetitively. The constructive heuristic uses alter-
nate costs, obtained in the process of computing the Gilmore-Lawler bounds,
as the criterion for choosing the next assignment. Different partial solutions,
to be used as starting points for multiple application of the constructive pro-
cedure, are obtained by development of a restricted breadth-first branch and
bound tree. Computational results show that the method compares favourably
with two competing procedures from the literature in finding solutions within
0.40% of the best known solutions for well known problems. Computing times
are reasonable for problems with as many as 36 facilities. We also present a
new best known solution for on version of the Steinberg problem, found in the
process of experimentation. /' - '.). ' . -
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1 Introduction

The quadratic assignment problem formulation applies to a wide and diverse
range of problems: the location of interdependent plants or facilities, the layout
ofinteracting departments in an office building, the location of medical facilities
in a hospital, the location of indicators and controls on a control panel or in
a control room, the backboard wiring problem in the design of computers and
other electronic equipment, the traveling salesman problem, and the production
seqencing problem with dependent setup times. These problems are similar
in structure to the classical linear assignment problem of assigning indivisible
fiacilties to discrete locations, but are more complicated because the objective
f ction contains terms that are quadratic in the decision variables, arising due
to the interdependence of facilities. The quadratic assignment problem (QAP) is
k=Ywn to be an NP-complete problem and no known solution method is capable
ofsolving problems with 15 or more facilities optimally in reasonable time. Con-
sequently, there is a need for heuristic methods that provide good sub-optimal
solutions. In the literature, the QAP is generally discussed in terms of the facil-
ities layout problem (FLP), which is perhaps the best known application. Given
the fact that solution methods can be applied to different problems by simply
redefining coefficients and variables, this practice is adopted, without loss of
gemerajty.

The heuristic solution procedure for the facilities layout problem presented
in this paper is a combination of a constructive technique for obtaining com-
plete solutions, and exchange-improvement routines for improving them. The
comtrctive procedure is based on the use of alternate costs, choosing as the
net assignment to be added to the present partial solution the assignment with
the largest alternate cost. The procedure can then be repeated on the aug-
miated partial solution, until all facilities have been assigned. To improve the
quality of the solution found, it was deemed necessary to construct several so-
lutions, attempt to improve them through exchange procedures, and retain the
best solution arrived at. Towards this end, a method was devised to provide
several partial assignments as starting points for the construction procedure,
which then completes them, arriving at different complete solutions. The ob-
jective was achieved through development of the first few levels of a restricted
breadth-first type decision tree. The nodes of this tree contain distinct par-
tizl assignments that provide the starting points for repeated application of the
cmitructive technique. The final phase of the algorithm consists of exchange
impnrwement of these solutions.
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1.1 Mathematical Formulation

We define the following matrices and notation:

A = I1aiijis the fixed cost matrix, where aij is the fixed linear cost

of installing facility i at location j

T = -- 1filis the intensity or flow matrix, where fii is the cost per unit

distance of transporting the flow from facility i to facility j

D = lid,, his the distance matrix, where dii is the distance

from location i to location j

p(i) is the location to which facility i is assigned

With these definitions, the facilities layout problem (FLP) is to find a one-to-
one mapping of the set of facilities (A( = {1,2,... , n}) into the set of locations
(AP) so as to:

hmize E aip(i) + E fijdp(iOp(j )  1

ifEV ijeX

2 Review of Existing Algorithms

Optimal algorithms for the facilities layout problem can be classified under two
categories:

* Implicit Enumeration, including single-assignment algorithms proposed by
Gilmore [101 and Lawler (17]; and pair-assignment algorithms proposed by
Land [16] and Gavett and Plyter [9].

" Linearizations, such as those proposed by Lawler (17], Bazaraa and Sher-
ali [3], Kaufman and Broeckx [15], Balas and Mazzola [1], and Kaku and
Thompson [14].

Various heurkiic procedures have been devised for the facilities layout prob-

lem and can be grouped under four major categories:

" limited enumeration

" constructive procedures

" heuristic solutions to linearized problems

" improvement procedures
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For more detailed reviews and experimental comparisons of heuristic techniques,
see Nugent, Vollmann and Ruml (201, Hanan and Kurtzberg (12j, Ritzman (221,
Liggett [18], Burkard and Stratmann [6], Picone and Wilhelm (21], and Kaku
and Thompson [13].

2.1 Hybrid Algorithms for the FLP

Hanan and Kurtzberg [121 suggest in their paper that superior performance (in
terms of solution quality and computing time) could be achieved by combining
a constructive method with an iterative-improvement procedure. A construc-
tive heuristic is one that, starting from any partial assignment (perhaps empty),
chooses the next assignment to be made by evaluating the assignment of unas-
signed facilities to free locations. This process is repeated until a complete
solution has been constructed. Such a coupling of improvement routines with
other techniques-constructive and otherwise-has proved to be beneficial. In
this section we review the literature on hybrid algorithms for the FLP. The term
hybrid here is used to refer to methods that employ some technique to construct
or obtain complete assignments for the FLP and then attempt to improve these
by applying exchange routines. The best results mentioned in the literature have
been achieved by algorithms using such a two-phase approach, and we provide a
brief discussion of the better ones, along with sample results in terms of solution
quality and computation time.

The computation times for all the algorithms discussed in this section are
quoted from the respective papers without any attempt to normalize for differ-
ences in computers and programming languages used. However, the computer
and language are mentioned wherever this information is available. The prob-
lems for this chapter are taken from the following sources. The NVR prob-
lems are randomly generated problems from a paper by Nugent, Vollmann and
Ruml [20], where the number at the end refers to the size of the problem. The
name STEIN is used to refer to the backboard wiring problem presented by
Steinberg [23], where 34 components are required to be placed in a 9 x 4 rectan-
gular grid; necessitating the inclusion of two dummy components. Three options
are available in the way distances between locations are measured. RD stands
for rectilinear distances, ED for euclidean distances and SED represents squared
euclidean distances. The ELSHAFEI problem [7] is a 19 department hospital
layout problem.

Burkard and Stratmann (6] presented two combination methods. The first
applies the Gaschutz and Ahrens [8] graph-theoretic approach to several (50-80)
random assignments to obtain solutions which can be improved by exchange
procedures (ALGi). The exchanges are carried out by a sophisticated improve-
ment routine called 'VERBES' which is described below. The second method
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employs a restricted tree search coupled with VERBES (ALG2) as follows:

1. Using a branch and bound procedure based on the Gilmore-Lawler method
with a time limit, determine a suboptimal solution.

2. Improve this solution by VERBES.

3. If an improvement is made in (2), determine the smallest level k in the
search tree that was affected by the exchange algorithm.

4. Restart the branch and bound process at this level k, ensuring that as-
signments already evaluated are not considered again. Return to step (2).

The package VERBES operates as follows:

1. Apply a pair exchange algorithm n/3 times (where n is the number of
facilities), using arbitrary order of exchanges.

2. Store the three best solutions found in (1).

3. Apply a triple exchange algorithm to all three solutions from (2). These
exchanges are carried out in a fixed order based on the actual assignments.

4. If an improvement is made in (3), repeat the pair exchange and triple
exchange, both in a fixed order determined as in (3), until one of them
does not produce a reduction in costs. (For details on the method for
determining the fixed order referred to above, see pages 141-142 of [61.)

A hybrid procedure due to Liggett [19] makes use of a constructive technique
based on the Graves-Whinston [11] algorithm. The Graves-Whinston algorithm
provides a means of computing an expected value for the completion of any
partial assignment, using statistical properties. In the constructive phase of
Liggett's method, the facility-location pair offering the smallest expected value
for a complete assignment is chosen as the next assignment to be fixed, just as
the pair with the smallest lower bound would be chosen in a depth first search
tree. To obtain multiple alternate solutions for application of an improvement
procedure, the method incorporates a limited backtracking mechanism as fol-
lows. At early levels, if the second best expected cost for the assignment of the
chosen facility is within 0.50% of the smallest expected cost, this node is saved
for exploration of an alternate route through the partial decision tree. Such
assignments are termed "critical junctions" and by backtracking to them, alter-
nate solutions can be generated. Thus the method, while termed a constructive
procedure, has certain features of limited tree search. The complete solItions
obtained are subjected to a simple pair exchange improvement procedure. See
Table 1 for results.

4
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Table 1: Results for the Burkard-Stratmann and Liggett algorithms

PROBLEM Burkard-Stratmanna Liggettb
ALGI ALG2

NVR20 1297c 3:00d 1287 1:26 1308 0:01
NVR30 3089 10:00 3079 6:51 3103 0:01
STEIN RD 4804 20:00 4807 13:59 - -
STEIN ED 4132.97 20:00 4132.29 18:09 4141 -
STEIN SED 7926 20:00 8109 20:54 - -

'Fortran programs on a CDC Cyber 72/76.

'Fortran programs on an IBM 360/91.

'Objective function value
"Computation time (mins:secs)

The two methods of Burkard and Stratmann (ALG1 and ALG2) are com-
parable in terms of solution quality and computation times but the second is
universally applicable as opposed to the Gaschutz and Ahrens method which
assumes a symmetric distance matrix and requires the locations to lie in a rect-
angle. The computation times for the Gaschutz-Ahrens plus VERBES method
are approximate times mentioned in [6]. The Liggett algorithm has a distinct ad-
vantage over the others discussed in this section in terms of computation times,
which are an order of magnitude smaller. The quality of the solutions found is, -

however, comparatively inferior.

Bazaraa and Kirca [21 have implemented a complex scheme involving incom-
plete tree search and exchange routines to find suboptimal solutions for the FLP.
The tree search is modified from the conventional branch and bound procedure
as follows:

a Exchange routines are applied to the LAP solutions obtained in the process
of computing the Gilmore-Lawler bounds. This is done at all branches or
only selected branches depending on the level of the tree. The exchange
routine evaluates 2-way (pairwise) exchanges and 2 x 2-way exchanges
(simultaneous exchange of locations of two pairs of facilities), iterating
between the two until no further improvement is possible.

* A "selective location" rule permits assignment of high-interaction facilities
only to central locations and low-interaction facilities only to "off-median"
locations.

0 "Group assignment" of objects attempts to place sets of facilities with high
pairwise interactions close to each other.
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Table 2: Results for the Bazaraa-Kirca and Burkard-Bonniger algorithms1 *

PROBLEM Bazaraa-Kircaa Burkard-Bonnigerb

NVR20 1285 2:36 1287 0:50
NVR30 3064 5:20 3072 6:29
STEIN RD 4800 7:46 4822 14:37

STEIN SED 7926 8:27 7987 14:37

OFortraa programs on a CDC Cyber 76M

*Fortraa IV programs on a CDC Cyber 70 model 74-28/CDC 6400

" Artificial upper bounds, depending on the level of the tree, are used to
speed up the fathoming process.

* Mirror images, which exist especially in rectangular grid layouts, are re-
moved. (This will be explained in detail in the discussion of the heuristic
proposed in this paper.)

This inexact search process is used iteratively by alternating between two branch-
ing rules to reduce the dependence on initial partial assignments selected by just
one branching strategy. The results obtained by Bazaraa and Kirca are presented
in Table 2.

The last heuristic algorithm discussed in this section is due to Burkard and
Bonniger [4], who have devised a heuristic which finds cutting planes directly,
without Benders' Decomposition, for the Balas and Mazzola [1] linearization.
The authors start with a randomly generated solution which is improved by
pairwise and triple exchanges. The cutting plane heuristic is then applied to this
solution and the new solution is improved by pairwise exchange. The application
of one cut and pairwise exchange constitute one iteration of the main algorithm.
The method goes through 3n such iterations, after which a new random solution
is generated and the process is restarted. The number of restarts used is 10 for
n_5 20 and 15 for n > 20, and the best result found is used as the final solution.
Riwults from the Burkard and Bonniger paper are presented in Table 2. The
slution found in any one run of this algorithm is dependent on the random initial
solutions generated during this particular run and hence the results presented for
this algorithm are the average results over 10 tests for each individual problem.

Algorithms for solving the facilities layout problem can be placed roughly
along some sort of continuum with naive/simplistic heuristics at one end provid-
ing only "poor to fair" solutions, to exact methods at the other end providing
optimal solutions but requiring prohibitive amounts of computation time. In be-
twen, one finds heuristic methods which are more sophisticated than the naive
ones and provide better solutions but at some additional cost in computational

6
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requirements. Starting from the low-cost, fair/poor solution end and moving to
the optimal solution end, one would first find the Liggett algorithm, followed
further along by the Burkard-Bonniger and Bazaraa-Kirca algorithms. The al-
gorithm presented in this chapter falls into the same approximate category as
the last two, and results will be compared accordingly.

3 A New Hybrid Algorithm

The algorithm proposed in this chapter consists of three parts corresponding to
the three points discussed below. In the first part, several partial assignments
are generated for use as starting points for a constructive heuristic. In the second
part, these starting points are used to construct complete assignments, and the
final part attempts to improve the constructed solutions by the application of
exchange routines.

3.1 A Constructive Heuristic

The Gilmore-Lawler algorithm provides a way for choosing the next assignment
through an extension of the computations required for calculating the lower
bound for any partial assignment. It is not necessary to explicitly evaluate
additional assignments individually, thus reducing the computational burden.

To calculate a lower bound for a given partial assignment, proceed as follows.
Suppose M is the set of facilities already assigned, and 8 is the set of locations
that have already been assigned facilities. We begin by evaluating the assignment
of an unassigned facility i to a free location j. The incremental cost due to this
assignment is:

Lj = aj + E {fpdjp(p) + fpidp(P)j} + E fipdjp(p) (2)
PEM POM

The first two terms in this expression are known exactly and we are required to
find

A,, = Min. E (3)
POM

Define two vectors: F is the i h row of Y minus the i element minus the
elements p E M; Dj is the jtA row of V) minus the jth element minus the
elements q E S. Let vii be the minimum dot (inner) product of F and D'. This
minimum is obtained by matching the mlh largest element of one vector with
the mth smallest element of the other vector. Then
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Ai= - , + fidjj (4) S

This value of Ai is substituted in 2 to obtain Lij. The process is repeated for
all pairs (ij) such that i % M and j S. The optimal solution to the linear
assignment problem defined by the matrix of these values of L,, can then be
obtained

=Min E ,iij (5) J.

I,..,

A lower bound on all solutions contained on branches emanating from this node

LB - aip() + E fjd,{,()p(, + z (6)
ieM ijeM .

The Assignment Selection Rule

The solution to the LAP defined by equation 5 provides the basis for choosing
the next assignment in the constructive heuristic used. The dual variables from
the optimal solution can be used to reduce the matrix, i.e. replace each Li1 by
/;i - ui - vi. For every {i,p(i)} element, which will now be zero, find the next
smallest element in that row and column, and take their sum. This amount is
the regret or minimum additional cost if assignment {i,p(i)} is not made. Also,
this regret plus LB gives us the alternate cost of this assignment. Choose the
assignment which has the maximum regret, or, equivalently, the maximum al-
ternate cost as the next one to be fixed. Now calculate the lower bound for the
augmented assignment and repeat until all but two facilities have been assigned.
At this stage, only two completions are possible. Utilizing the known cost com-
ponent of the lower bound, their values can be calculated easily. The better
value and its corresponding assignment are saved. We also refer to this process
of starting from a partial assignment and constructing a complete solution as
sending a "probe" from the partial assignment; the cost of the complete solution
is called the value of the probe. '

The probe is modified for problems with dummy facilities (e.g. the Steinberg
problems) in the following way. Suppose that there are m dummy facilities. The
locations are ranked in increasing order of total distance to and from other loca-
tions, and the dummy facilities are assigned to the last m locations in the order.
These assignments are made in addition to the ones in the partial assignment
used as a starting point for the probe, before beginning the constructive heuris-
tic. The reasoning behind this is that dummy facilities have (by definition) no
interaction with any other facility and should be assigned to corner or distant
locations.

8
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One run of a constructive heuristic, starting from a single partial solution,
is not likely to lead to a good solution. The literature on constructive tech-
niques for the facilities layout problem and experimentation with the heuristic
described in this section shows that this is certainly true for the FLP. To obtain
better solutions with a constructive procedure, two different strategies can be
implemented. The solution provided by the constructive heuristic can be im-
proved by exchange routines, or multiple runs of the constructive procedure can
be made. The proposed algorithm uses both the above strategies.

Multiple runs of the constructive heuristic can be made to lead to different
solutions in two distinct ways. The first option is to use different starting points.
The alternative is to evaluate the possible assignments at the next stage and then
choose between them probabilistically, perhaps after weighting the assignments.
This causes the heuristic to follow different paths through the decision tree for
the problem, culminating in different solutions. This latter method was not
as successful as the first in constructing good solutions and the starting points
option has been retained in the final design of the algorithm presented in this
paper. In the next section, we describe how several starting points can be
generated, and in the subsequent section discuss the exchange routines applied
to the solutions constructed.

3.2 Starting Points for the Constructive Heuristic

A simple way to get different partial assignments is to choose one facility and
assign it to the different locations. For instance, facilities could be ranked in
decreasing order of the total flow through them and the first facility could be
assigned to all the locations to obtain n different starting points. (We could ar-
rive at n2 partial assignments by considering the pairing of all facilities with all
loca. ins.) It is obvious that some of these assignments would be poor choices
since facilities with high interactions (large flows and/or many flows to other
facilities) should be located centrally and, conversely, facilities with low inter-
action levels should be placed in more remote locations. The computational
requirements can be reduced, without an unreasonable risk of missing a good
solution, by considering only a subset of such pairs. Taking this line of reasoning
one step further, more partial assignments could be obtained by using starting
points containing two, three or even more assignments. For a problem with n
facilities, and m individual ssignments in each starting point, there are ()
sets of locations that could be chosen. Each one of these sets could be combined
with the m fixed facilities in m! ways. Thus the number of possible partial
assignments grows as m! x ( ,).

A. breadth-first tree search can be suitably modified to serve the purpose
of generating several starting points, each one of which contains a relatively

o
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good partial assignment. The total number of such partial assignments can be
controlled by specifying the lowest (largest index) level of the tree and the rate
at which the number of nodes saved grows from one level to the next. It is 3
convenient and computationally less burdensome to fix a facility at each level
and evaluate only the assignment of this facility to all free locations. In this
algorithm, facilities are ranked in decreasing order of total flow, and the jZh

facility in the order is fixed at level i of the search tree. This approach has
the intuitive appeal of assigning "critical" facilities first, and then fitting less
important facilities around them. Let us consider the first level of such a tree.
There is only a limited number of central locations to which the first facility (in
order) can be reasonably assigned, and the other nodes can be discarded. At
level two, under each of the nodes saved at level one, again there is a limited
number of free locations which are suitable for the assignment of the second
facility.

Following this logic, two versions of restricted breadth-first search trees were
developed. Version 1 develops all the nodes at level one and saves the k, best. ?
Then all nodes are evaluated under the saved ones and the k, x k2 best are saved.
This is repeated until the limited tree has been developed to the desired level,
say m; the number of nodes saved at any level i is ki times the number at the
previous level. Version 2 differs from the first in one respect. After saving the
k, best nodes at level 1, the k2 best under each are saved at level 2. Similarly
at any lower level i, the assignments saved are the ki best under each node at
the previous level. The total number of partial assignments generated by either
version is the same (k, x k2 X ... x kn) bat version 2 tends to spread out the
tree and include nodes that are not so promising in terms of the expected values
of their completions, but contain more diverse partial assignments. Such a "fan-
shaped" tree provides superior performance within the overall algorithm. The
reasons for this will be discussed in detail in the conclusion to this paper.

The probes made from nodes at level m can be augmented by probes that use
the partial assignments at level m - 1. Given that the constructive heuristic and
the tree search method use a different criterion for choosing the next assignment,
this can lead to different and sometimes better complete solutions. The use of 1,
starting points at even, higher levels was not found to provide improved solutions.

It was also found that using different values of k, was an effective strategy,
permitting more nodes to be saved at higher levels, while reducing this number
at lower levels to save on computation time without any deterioration in solution
quality. The number of nodes saved at level one is fixed at four; the number
saved at each of the next three levels (two through four) is three; and at levels
below that two nodes are saved under each at the higher level. The lowest level
of the tree developed, and hence the total number of probes made, is a function
of the size of the problem. Information on the choice of these parameters is

10
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Table 3: Number of probes as a function of problem size

Problem size m Probes
12-20 3 48
21-30 4 144
31-40 5 324

given in Table 3.

The Evaluation Function

There are two well known evaluation functions for the facilities layout or quadratic
assignment problem. The Gilmore-Lawler lower bound is the first and has been
explained earlier. Another approach to evaluating a partial assignment was pre-
sented by Graves and Whinston [11]. The Graves-Whinston algorithm provides
a means of computing an expected value for the completion of any partial assign-
ment, using statistical properties. These expected values can be used in place
of lower bounds such as those computed by the Gilmore-Lawler algorithm; the
computation time required by the Graves-Whinston method is, however, consid-
erably smaller. Experimental results with the use of these evaluation functions
showed that both methods provided equally good solutions, when used as a
part of the overall algorithm, but the Graves-Whinston method consumed much
less time. Complete runs of the algorithm using the two evaluation functions
showed that the time required was 25 to 30% less for the version incorporating
the Graves-Whinston method; since the time consumed by the probes and ex-
change routines is not affected, the advantage over the Gilmore-Lawler method
is even greater. Based on these results, the Graves-Whinston method has been
retained as the technique used to generate starting points for the probes.

Removing Mirror Images

Consider two complete and distinct assignments (p1 and P2) with the following
property:

dpl(i)(j) -- d2(i(j ) Vi,

These two assignments have identical objective function values, and are called
mirror images [2]. Rectangular grid layouts have several such mirror images.
Further, it is possible to identify assignments that, when added to a given par-
tial assignment, would result in assignments that are mirror images. Probes
from mirror images result in complete assignments that are themselves mirror

)1
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1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

Figure 1: Mirror images in rectangular grid layouts

images with the same objective function value. Removal of mirror image starting
points can be used to reduce the computation time or to increase the number
of probes that can be made in the same time. For rectangular grid layouts, the
assignment of an unassigned facility i to two free locations (p and q) can form
mirror image assignments with respect to any given partial assignment (such as
that represented by a node of the search tree) if and only if the following two
conditions are satisfied:

1. The total distance from p to all other locations is equal to the total distance
from q to all other locations.

2. The respective distances from p and q to the locations occupied by facilities
already assigned are equal.

Consider the 20-facility layout problem with a rectangular grid layout as shown
in Figure 1. At level 1 of the tree, the assignment of a given facility to location
8 or 13 would form mirror image partial assignments, as would its assignment
to locations 7, 9, 12 or 14. A third group of mirror image assignments involves
locations 3 and 18; the fourth group would include locations 2, 4, 17 and 19; a
filth group is formed by locations 6, 10, 11 and 15; and a final group contains
locations 1, 5, 16 and 20. Thus we need consider only 6 distinct assignments, of
which the last few are not likely to be part of any good solution.

Moving to level 2 of the tree, consider the possible assignments under the
node where the first facility has been assigned to location 8 (see Figure 1).
Assignment of the second facility to location 7 or 9 would form mirror image
partial assignments; locations 12 and 14 would now be a separate group leading
to mirror images. Other examples are locations 2 and 4 as one group and
locations 17 and 19 as yet another.

The total distance from each facility to all others is computed just once at
the beginning of the algorithm, and provides the first quick check for mirror

12
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images. If the total distances are equal, the second condition can be checked.
Application of conditions (1) and (2) at each level under each node is sufficient
to ensure removal of mirror image partial assignments from the set of starting
points developed.

3.3 Exchange Improvement

The proposed algorithm incorporates pairwise and triple exchange routines. The
complete solutions found by the constructive heuristic are subjected to pairwise
exchange. Experimental experience showed that the very high computational
burden involved in application of a triple exchange procedure to all the improved
solutions thus obtained is not justified. This result is corraborated by the expe-
rience of other researchers [6,18]. Limited use of a triple exchange routine can,
however, be fruitful. In this algorithm, triple exchange is applied to the best so-
lutions available (one for problems with less than 20 facilities; two for problems
with 20 to 29 facilities; three for larger problems) after pairwise exchanges have
been attempted on all probe solutions at any level. If triple exchange does suc-
ceed in improving a solution, pairwise exchange is again attempted on the new
solution. Further improvement means that the latest solution can be recycled
through alternate application of triple and pairwise exchange, until one of the
procedures is unable to find a better solution.

The order used in evaluating exchanges in both routines is facilities ranked in
decreasing order of total flows, and the first exchange providing an improvement
is carried out. All pairs/triples are evaluated, and if an improvement is made,
another iteration is done. Details on the effectiveness of these exchange pro-
cedures for the sample problems are provided in the section on computational
experience.

3.4 The Algorithm

The program written to execute the algorithm provides the following additional
information beside the best solution found and its cost:

e The value of the best assignment found by a probe (before exchange im-
provement) is stored and reported. This provides a basis for evaluating the
effectiveness of the constructive heuristic as a stand-alone solution method.

* The best solution found through the first application of the pair exchange
routine to the individual probe solutions is also provided. Comparison of
this value with the best solution found permits evaluation of the improve-

ment effected by the triple exchange routine.

13



Table 4: Computational results for the new heuristic

PROBLEM i2 2 3C
NVR12 289 289 0:03.12
NVR15 575 575 0:06.95
ELSHAFEI 8606274 8606274 0:17.84
NVR-2O 1285 1285 0:22.85
NVR30 3062 3074 5:00.51
STEIN RD 4 76 8d 4777 18:39.84
STEIN SED 7926 7926 21:08.54

'Best known solution
bSolution found by new heuristic

'Computation time (mins:secs) on a VAX 8600
dNew best known solution

The procedure starts by developing the restricted search tree, saving the
appropriate number of nodes under each node at the previous level, until level
m - 1 has been reached (see Table 3 for the choice of m). The partial assign-
ments represented by the nodes at this level are used as starting points for the
constructive heuristic. The best probe value is updated each time a probe finds a
better solution. Each probe solution is subjected to pair exchange improvement
and the best solutions found after pair exchange at level m - 1 are stored. These
solutions are then subjected to triple exchange. If an improvement results, pair
exchange is again attempted and the procedure goes through another cycle of
exchange improvement. The final solution is stored as the best solution found
at this level The process is repeated at the lowest level; the final solution at
level m is compared to the best solution from level m - 1, and the better of the
two gives the best solution found by the hybrid heuristic.

4 Computational Experience

The heuristic of section 3 was used to solve the sample problems mentioned in
section 2 and results are presented in Table 4. In column 1 are the best known
solutions from the literature; column 2 gives the solution found by the new
heuristic; column 3 gives the CPU time required on a VAX 8600 using Fortran
programs'. The best known solutions for the NVR12, NVR15 and ELS11AFEI
problems have been shown to be optimal.

The best known solution reported for the STEIN RD problem was found in

'All linear assignment problems were solved using the LAP code of Derigs (51 I
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17 9 5 6 23 27 22 26 35

2 4 13 12 11 14 21 25 24

18 8 10 1 20 19 32 34 33

16 3 7 15 28 29 30 31 36

Figure 2: New best known solution for the STEIN RD problem (cost = 4768).

Table 5: Comparison of results for chosen algorithms

PROBLEM Percentage deviation from best known solution
Burkard-Bonniger Bazaraa-Kirca New Heuristic

NVR20 0.16 0.00 0.00
NVR30 0.33 0.07 0.39
STEIN RD 1.13 0.67 0.19
STEIN SED 0.77 0.00 0.00

the process of experimentation. As mentioned earlier, when there are dummy
facilities, they are pre-positioned in corner locations. For the Steinberg problem
this means that the two dummy components can be placed in two of locations
1, 9, 28, and 36. There are three ways to do this-use corners on the diagonals,
use corners along lengths, or use corners along widths. Each way offers two
possibilities that are mirror images of each other. In effect, there are only three
choices and we solved the problem for each of the three options. The new best
known solution was found by the heuristic when the dummy facilities were placed
in corners along a width, and is presented in Figure 2.

Table 5 presents a comparison of the results for the heuristic of section 3 with
the results obtained by Burkard-Bonniger and Bazaraa-Kirca. The respective
columns give the deviation as a percentage from the best known solution for
each problem.

Finally, details on the performance of the algorithm of section 2 are presented
in Table 6. Column 1 gives the best probe value before exchange improvement;
column 2 gives the best solution found by applying the pair exchange routine
to probe solutions; and column 3 gives the best overall solution found by the
heuristic. It should be pointed out that the best solution found by applying pair
exchange to probe solutions is almost never found from the best probe.
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Table 6: Performance details for the new heuristic

PROBLEM 1a 2b  3C S.m

NVR12 291 289 289
NVR15 584 575 575 %

ELSHAFEI 8728824 8606274 8606274
NVR20 1310 1285 1285
NVR30 3163 3074 3074
STEIN RD 5011 4814 4777
STEIN SED 8417 8117 7926

'Best probe value

bBest solution found by applying pair exchange

"Ima solution

5 Analysis of Results and Conclusion

The heuristic proposed in this chapter finds solutions within 0.39% of the best
known solutions for all the commonly cited problems in the literature. However,
it is instructive to examine its performance in detail to analyse the effectiveness
of the component procedures. Toward this end, Table 7 reproduces the infor-
mation in Table 6 in a different format. The best probe value (column 1), the
best solution found by pair exchange (column 2), and the best overall solution
(column 3) are given in terms of their percentage deviation from the best known
solution.

Column 1 of Table 7 clearly shows that the performance of the construc-
tive heuristic as a stand-alone solution method deteriorates as the problems
get larger. Starting with a deviation from the best known solution of less than
1.00% for the 12 facility problem, the deviation steadily increases until it is more
than 6.00% for the 36 facility problem. One reason for this is the fact that the
Gilmore-Lawler (or Graves-Whinston) evaluation function does not provide an
accurate idea about the relative quality of partial assignments. For example,
the Gilmore-Lawler bounds at level 1 of a search tree are only about 60% of
the best known solution for the NVR30 problem. A similar observation can be
made concerning the pair exchange routine (column 2). Pairwise exchange was
sufficient to find the optimal/best known solution for the sample problems with
20 or less facilities. For the 30 facility problem, pair exchange was able to find
a solution within 0.40% of the best known but for the 36 facility problem using
squared euclidean distances, this figure rose to 2.41%. Triple exchange became
effective only for the STEIN problems (column 3). With rectilinear distances,
triple exchange improved the solution from 4814 to 4777; the subsequent pair U

'exchange did not find a better solution. With squared euclidean distances, the
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Table 7: Analysis of performance for the new heuristic

% deviation from
PROBLEM best known solution

1 2b  3C

NVR12 0.69 0.00 0.00
NVR15 1.57 0.00 0.00
ELSHAFEI 1.42 0.00 0.00
NVR20 1.95 0.00 0.00
NVR30 3.30 0.39 0.39
STEIN RD 4.96 0.84 0.19
STEIN SED 6.19 2.41 0.00

'Best probe value
bBest solution after pair exchange

'Final solution

best value after pair exchange was 8117 and triple exchange reduced this to
8029; the final improvement to 7926 was effected by the second pair exchange.
In none of the cases was a second run of the triple exchange routine beneficial.

As has already been pointed out, the best solution found by probes generally
never gives the best solution after pair exchange. This was true for every one
of the sample problems. It was found that pair exchange was most effective
on solutions that were not among the best constructed by probes. This fact
also explains the superior results obtained by using a tree that was relatively
spread out, providing a greater variety of partial (and complete) solutions, with
a relatively larger spread of solution quality.

This result has interesting implications for the design of combination heuris-
tics. Most efforts in this area have placed the emphasis on designing better
constructive heuristics, with exchange-improvement procedures relegated to the
secondary role of achieving small gains, if any, through local optimization. Our
results indicate that improvement methods play a pivotal role in finding good
solutions, and the more promising approach may be to use simpler and faster
methods to construct a larger number of distinct solutions for the explicit pur-
pose of applying exchange- improvement techniques. A close look at some com-
petitive methods published in the literature suggests that these algorithms too
might be utilizing the power of improvement methods, but indirectly and with-
out explicit recognition of the fact. The Burkard-Bonniger and Bazaraa-Kirca
algorithms also make extensive use of exchange procedures, and these are not
necessarily applied only to good solutions. Detailed results are not available for
their methods to indicate at what stage and how their best solutions are found,
but it is possible that a study would lead to similar conclusions. To sum up, the
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hybrid algorithm of this chapter presents a relatively easy way to construct fairly
good diverse solutions that can be used to exploit the performance of exchange
improvement procedures.
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